3. fejezet: Közeg-hozzáférési módszerek

Üzenetszórásos csatornával rendelkező alhálózatok esetében ténylegesen egy kommunikációs csatorna van és ezen az egy csatornán osztozik az összes hálózatba kapcsolt számítógép (vagy más néven állomás). Ehhez az egyetlen csatornához, közeghez kell minden állomásnak hozzáférni. A hozzáférés alatt itt az adást értjük, hiszen a vétel nem probléma: minden állomás veszi a többi adását. Megfelelő azonosítás után (pl. állomáscím-figyeléssel) dönt arról, hogy az üzenet neki szól-e. A következők feltételezésével tárgyalhatók ezek a módszerek: 

Az átviteli közeg hozzáférésére számos eljárást használnak. A hozzáférés módja — amint azt a későbbiekben látni fogjuk — függ az hálózat topológiájától is, vagyis attól, hogy milyen módon vannak az állomások összekapcsolva. A közeg elérési módja szerint három fő hozzáférési módszer lehetséges: 

Véletlen vezérlés: akkor a közeget elvileg bármelyik állomás használhatja, de a használat előtt meg kell győződnie arról, hogy a közeg más állomás által nem használt.

Osztott vezérlés: ebben az esetben egy időpontban mindig csak egy állomásnak van joga adatátvitelre, és ez a jog halad állomásról-állomásra.

Központosított vezérlés: ilyenkor van egy kitüntetett állomás, amely vezérli a hálózatot, engedélyezi az állomásokat. A többi állomásnak figyelnie kell, hogy mikor kapnak engedélyt a közeg használatára.

Ezen belül számos megoldás lehetséges, a legfontosabbakat a következő felosztásban foglaltuk össze:

 

Véletlen átvitel-vezérlés

Mindegyik állomás figyeli a csatornát: ha szabad akkor az adás idejére kisajátítja. A módszer nevében szereplő véletlen kifejezés döntő jelentőségű: mivel nincs külön eljárás az adási jog megadására, ezért elvileg nem lehet felső időkorlátot adni az üzenettovábbítás időbeli bekövetkezésére.

Ütközést jelző vivőérzékeléses többszörös hozzáférés (CSMA/CD)

A módszer angol elnevezése: Carrier Sense Multiple Access with Collision Detection =CSMA/CD. Ennél a módszernél, mielőtt egy állomás adatokat küldene, először “belehallgat” a csatornába, hogy megtudja, hogy van-e éppen olyan állomás amelyik használja a csatornát. Ha a csatorna “csendes”, azaz egyik állomás sem használja, a “hallgatódzó” állomás elküldi az üzenetét. A vivőérzékelés (carrier sense) jelenti azt hogy az állomás adás előtt belehallgat a csatornába. Az állomás által küldött üzenet a csatornán keresztül minden állomáshoz eljut, és véve az üzenetet a bennfoglalt cím alapján eldöntheti hogy az neki szólt (és ilyenkor feldolgozza), vagy pedig nem (és akkor eldobja).

Ennél a módszernél természetesen előfordulhat olyan eset, amikor egyszerre két vagy több állomás akarja használni a közeget. Az adás közben — mivel közben a csatornán lévő üzenetet veszi — el tudja dönteni, hogy az adott és a vett üzenetfolyam egyforma-e. Ha ezek különbözők, akkor azt jelenti, hogy valaki más is “beszél”, azaz a küldött üzenet hibás, sérült. Ezt ütközésnek hívják, és ilyenkor az állomás megszakítja az üzenetküldést.

Az ütközés miatt kudarcot vallott állomások mindegyike az újabb adási kísérlet előtt bizonyos, véletlenszerűen megválasztott ideig várakozik. Ezek az idők a véletlenszerűség miatt eltérők, és a versengő állomások következő hozzáférési kísérlete során egy, a legrövidebb várakozási idejű fog tudni adni, mivel a többiek a várakozási idejük leteltével adás előtt a csatornába belehallgatva azt már foglaltnak fogják érzékelni. Az e protokoll szerint működő állomások a következő három állapot valamelyikében lehetnek: versengés, átvitel, és tétlen állapot. Végiggondolva az eljárást, nyilvánvaló, hogy gyér forgalom esetén a közeghozzáférés nagyon gyors, mivel kevés állomás kíván a csatornán adni. Nagy hálózati forgalom esetén az átvitel lelassul, mivel a nagy csatorna terhelés miatt gyakoriak lesznek az ütközések. A széles körben elterjedt Ethernet hálózat ezt a módszert használja, és részletesebben a LAN-okkal foglalkozó fejezetben — mint az IEEE 802.3 szabvány — írunk róla.

Réselt gyűrű (slotted ring)

A gyűrűn felfűzött állomások rés-eknek elnevezett rögzített hosszúságú kereteket adnak körbe. Minden résben van egy jelző (marker) amelyik jelzi a rés foglaltságát. Mivel a rés hossza állandó, az állomásnak az üzeneteit akkora darabokra kell vágnia, hogy azok elférjenek a résben (az állomáscímekkel, és egyéb kiegészítő információval együtt.) Ha egy állomáshoz egy nem foglalt (üres) rés érkezik, akkor az elhelyezi benne a saját adatait, és továbbadja az immár foglalt keretet. Természetesen az adatot elhelyező állomásnak a feladata a visszaérkezett keret kiürítése, azaz a foglaltságának a megszüntetése. Ha átviteli, vagy egyéb hibák miatt (pl. az állomás elromlik) ez nem történik meg, akkor ez a rés foglaltan tovább kering a gyűrűben. Ezért kijelölnek egy állomást, amely felügyelői feladatot is ellát: ez figyeli, hogy van-e olyan rés, amely a gyűrűben nem jut alaphelyzetbe, és ha ilyen van, egy idő múlva eltávolítja a gyűrűből. Mivel önmagában a közeg nem biztosítja a rések megfelelő lépkedéséhez szükséges késleltetést, ezért az állomásokon (és így a gyűrűn) a bitek átvitele léptetőregiszterek segítségével van lassítva.

 

68. ábra: Réselt gyűrű működése

Regiszter beszúrásos gyűrű (register insertion ring)

A gyűrű topológiájú hálózatoknál a másik alkalmazott eljárás a léptetőregiszter késleltető funkcióján túl, annak tárolási képességét is kihasználja. A hálózati illesztőben két regiszter: egy léptető- (shift-) és egy tároló- regiszter található.

A gyűrű indulásakor a mutató a léptető regiszter kezdő pozíciójára mutat. Ahogy jönnek a bitek a hálózatról, a pointert mindig bitenként balra lépteti, azaz a gyűrűben lévő biteket tárolja. Közben a keretben lévő címet a beérkezett bitekből megállapítja.

Ha nem az állomásnak szól, akkor a kapcsolón keresztül kezdi kiléptetni a biteket, miközben az újabb érkező bitek a mutató által jelölt helyre íródnak, amely a léptetés miatt mindig felszabadul. Ha a keret utolsó bitjei is beérkezett, akkor a maradékot még kilépteti és mutató ismét a kezdő pozícióba kerül.

Ha a keret az állomásnak szólt, akkor a kapcsoló 2-es pozícióba kerülve nem engedi a keret kijutását, azaz kivonja a keretet a gyűrűből.

Kivitel esetén az állomás által összeállított keret a KIMENETI TÁROLÓ REGISZTER-ben van. Kivitel csak akkor lehetséges, ha a az előzőleg vett, és továbbadandó keret utolsó bitjét is már kitolta a BE-KIMENETI LÉPTETŐ REGISZTER-ből a gyűrűre, és a regiszterben elegendő hely van a kimeneti keret fogadására. Csak ekkor kerül a kimeneti kapcsoló a 3-as pozícióba, és kerül a regiszter tartalma bitenként a gyűrűre, a bemenettel szinkronban. Az új bemenet eközben gyűlik a felső regiszterben. Ha a kimeneti tároló regiszter kiürült, a kimeneti kapcsoló ismét az 1-es helyzetbe billen, folytatva a vett bitek küldését.

A módszer előnye, hogy a gyűrű kisajátítást megakadályozza. Ha csak egy állomás aktív, akkor azonnal szinte állandóan adhat, ahogy ismét feltöltötte a kimeneti regiszterét. Ha azonban más állomás is használja a gyűrűt, akkor a keretének elküldése után valószínűleg nem küldhet újabbat, mert a be-kimeneti regiszterében nem lesz elég hely.

 

69. ábra: Regiszter beszúrásos gyűrű

 


Ábrajegyzék

Bevezetés

1.fejezet: A hálózatok célja, alkalmazása, alapfogalmak

2.fejezet: Fizikai átviteli jellemzők és módszerek

3.fejezet: Közeg-hozzáférési módszerek (Osztott átvitel vezérlés, Központosított átvitelvezérlés), Ellenőrző kérdések

4.fejezet: Adatkapcsolati protokollok

5.fejezet: Hálózati réteg

6.fejezet: A felsőbb rétegek

7.fejezet: Lokális hálózatok

8.fejezet: A TCP/IP protokoll és az Internet

9. fejezet: Szótár

Irodalomjegyzék

Tárgymutató