Vezetékes átviteli közegek

A számítógép-hálózatok vonatkozásában az összekötő átviteli közeg természetétől függően megkülönböztetünk fizikailag összekötött (bounded) és nem összekötött (unbounded) kapcsolatokat. Az előbbihez tartoznak az elektromos jelvezetékek, az optikai kábel, míg az utóbbira jó példa a rádióhullám, (mikrohullámú) illetve az infravörös illetve lézeres összeköttetés. Mindegyiknek van előnye és hátránya: 

A jelenlegi a hálózatokat fokozottabban használó világban a fentieket mind mérlegelni kell, és ha már egy meglévő infrastruktúrát kell hálózati kapcsolatokkal kiegészíteni, sokszor csak a nem fizikailag összekötött megoldások jöhetnek szóba, hiszen egy forgalmas főút két oldalának összekötése — ha nincsenek kábelalagutak — kábelekkel szinte lehetetlen. Azt is tényként kell leszögezni, hogy a meglévő távbeszélő rendszerek nagy része majdnem kizárólag vezetékes kialakítású, és ezek felhasználása adja az összeköttetés mikéntjét.

Bár vezetékes összeköttetésnél független vezetékekből kialakított huzal-párok használata is elképzelhető, de igen rossz csillapítási és zajfelvevő tulajdonságai miatt ezt a gyakorlatban csak kisebb távolságokra használják. (pl. telefonvezetékek) Gyorsabb jelváltozásoknál az ilyen vezetékpár antennaként jeleket sugároz a környezetébe. A probléma megoldására a gyakorlatban két kialakítást használnak: a csavart érpárt, illetve az árnyékolt (koax) kábeles megoldást.

Csavart érpár (UTP,STP)

A csavart, vagy más néven sodrott érpár (Unshielded Twisted Pair = UTP) két szigetelt, egymásra spirálisan felcsavart rézvezeték. Ha ezt a sodrott érpárat kívülről egy árnyékoló fémszövet burokkal is körbevesszük, akkor árnyékolt sodrott érpárról (Shielded Twisted Pair = STP) beszélünk. A csavarás a két ér egymásra hatását küszöböli ki, jelkisugárzás nem lép fel. Általában több csavart érpárt fognak össze közös védőburkolatban. Pontosan a sodrás biztosítja, hogy a szomszédos vezeték-párok jelei ne hassanak egymásra (ne legyen interferencia). Az épületekben lévő telefon hálózatoknál is csavart érpárokat használnak. A felhasználásuk számítógép-hálózatoknál is ebből a tényből indult ki: ezek a vezetékek már rendelkezésre állnak, nem kell új vezetékeket kihúzni a munkahelyekhez.

Ma már akár 100 Mbit/s adatátviteli sebességet is lehet ilyen típusú vezetékezéssel biztosítani. Alkalmasak mind analóg mind digitális jelátvitelre is, áruk viszonylag alacsony. A zavarokkal szemben való érzékenységük tovább növelhető, ha árnyékolást alkalmazunk a csavart érpár körül. Az UTP kábelek minősége a telefonvonalakra használtaktól a nagysebességű adatátviteli kábelekig változik. Általában egy kábel négy csavart érpárt tartalmaz közös védőburkolatban. Minden érpár eltérő számú csavarást tartalmaz méterenként, a köztük lévő áthallás csökkentése miatt. Szabványos osztályozásuk:

 

Típus

Használati hely

1. kategória

hangminőség (telefon vonalak)

2. kategória

4 Mbit/s -os adatvonalak (Local Talk)

3. kategória

10 Mbit/s -os adatvonalak (Ethernet)

4. kategória

20 Mbit/s -os adatvonalak (16 Mbit/s Token Ring)

5. kategória

100 Mbit/s -os adatvonalak (Fast Ethernet)

 

A kategóriák közötti egyetlen lényeges különbség a csavarás sűrűsége. Minél sűrűbb a csavarás, annál nagyobb az adatátviteli sebesség (és a méterenkénti ár...). Az UTP kábeleknél általában az RJ-45 típusjelű telefoncsatlakozót használják a csatlakoztatásra.

Ethernet hálózatokban 3.-5. kategóriájú kábeleket 10BaseT néven specifikálták.

 

Koaxiális kábelek

16. ábra: Koaxiális kábel felépítése

A másik vezeték kialakítási megoldás a koaxiális kábelek használata. Felépítése a 16. ábrán látható. Széles körben két fajtáját alkalmazzák:

Az egyik az alapsávú koaxiális kábel, amelyet digitális jelátvitelre alkalmaznak, a másik az ún. szélessávú koaxiális kábel amelyet pedig analóg átvitelre használnak.

Az alapsáv elnevezés még abból az időből származott, amikor telefonbeszélgetésekre alkalmazták a kábeleket, és itt a sávszélesség az érthető emberi hangnak megfelelő kb. 0-4 kHz volt. A televíziós rendszerek megjelenésével a tv jelek átviteléhez jelentősen nagyobb sávszélesség kellett, ezeket a szélessávú kábelekkel oldották meg.

A koaxiális kábelek három igen lényeges jellemzője van: a hullámellenállása (Z0), a hosszegységre eső késleltetési ideje és a hosszegységre eső csillapítása.

A leggyakrabban az 50Ω ιs 75Ω hullαmellenαllαsϊ kαbelt használnak: az 50Ω -ost alapsávú, a 75Ω -ost szélessávú hálózatokban. Ez utóbbival azonban alapsávúként is találkozhatunk, főként akkor, ha a hálózat alapsávúként és szélessávúként egyaránt működhet.

A késleltetési idő a kábel szigetelésének permittivitásától (dielektromos állandójától) függ. A hálózatok működése szempontjából a nagy késleltetési idő hátrányos, ezért csökkentésére törekednek. Igyekeznek minél kisebb permittivitású szigetelőanyagot alkalmazni, de ezen túl ezt még az anyag szerkezetének lyukacsossá tételével tovább csökkenthető.

A kábel okozta veszteség az ohmos komponensekből, a dielektrikumban keletkező és a sugárzás okozta veszteségekből tevődik össze. A frekvencia növekedésével a bőrhatás is jelentkezik. A tömör központi huzallal készülő kábel késleltetése és csillapítása kisebb, mint a több összesodrott fémszálat alkalmazóé (ha egyébként minden más változatlan). A tömör huzalú kábel viszont merevebb, mint a sodrott változat. Az egyszeres árnyékoló harisnya nem fed tökéletesen, nem véd teljesen a környezet zavaraitól, ezért kettős árnyékoló harisnyát vagy egyszeres és kétszeres alumíniumfólia árnyékolást használnak olyan kábelekben, amelyeket zavarokkal erősen terhelt környezetben alkalmaznak.

Alapsávú koaxiális kábelek

Az alapsávú koaxiális kábeleket leggyakrabban helyi számítógép-hálózatok kialakítására alkalmazzák. Az alapsávú koaxiális kábelek jellemző maximális adatátviteli sebessége 100 Mbit /sec 1 Km-es szakaszon. Az átviteli sávszélesség nagymértékben függ a távolságtól. Tehát kisebb távolságon nagyobb sebesség is elérhető.

Ethernet hálózatokban az alapsávú koaxiális kábelek két típusa ismert az ún. vékony (10Base2) és a vastag (10Base5). A típusjelzésben szereplő 2-es és 5-ös szám az Ethernet hálózatban kialakítható maximális szegmenshosszra utal: vékony kábelnél ez 200 méter, vastagnál 500 méter lehet.

Szélessávú koaxiális kábelek

A másik fajta koaxiális kábelrendszer a kábeltelevíziózás szabványos kábelein keresztüli analóg átvitelt teszi lehetővé. Mivel ezek a szélessávú hálózatok a szabványos kábeltelevíziós technikát használják, ezért az analóg jelátvitelnek megfelelően — amely sokkal kevésbé kritikus mint a digitális — a kábelek közel 100 km-es távolságig 300 MHz-es (időnként 450 MHz-es) jelek átvitelére alkalmasak. Digitális jelek analóg hálózaton keresztül átviteléhez minden interfésznek tartalmaznia kell egy konvertert, amely a kimenő digitális jeleket analóg jelekké, és a bemenő analóg jeleket digitális jelekké alakítja. Egy 300 MHz-es kábel tipikusan 150 Mbit/s-os adatátvitelt tesz lehetővé. Mivel ez egy csatorna számára túlzottan nagy sávszélesség, ezért a szélessávú rendszereket általában több csatornára osztják.

Az egyes csatornák egymástól függetlenül képesek pl. analóg televíziójel, csúcsminőségű hangátviteli jel, vagy digitális jelfolyam átvitelére is. Az alapsávú és a szélessávú technika közötti egyik legfontosabb különbség az, hogy a szélessávú rendszerekben analóg erősítőkre van szükség. Ezek az erősítők a jelet csak az egyik irányba tudják továbbítani, ezért csak szimplex adatátvitelt képesek megvalósítani. A probléma megoldására kétféle szélessávú rendszert fejlesztettek ki: a kétkábeles és az egykábeles rendszert.

A kétkábeles rendszerben két azonos kábel fut egymás mellett. A két kábelen ellentétes irányú az adatforgalom. Egykábeles rendszerben egyetlen kábelen két különböző frekvenciatartomány van az adó (adósáv) és a vevő (vevősáv) részére.

A szélessávú rendszerek nagy előnye, hogy egyazon kábelen egyidejűleg egymástól függetlenül többféle kommunikációt valósíthatunk meg, hátránya azonban a telepítés és az üzemeltetés bonyolultsága és a jelentős költségek.

 

17. ábra: Különféle kábeltípusok

 

18. ábra: Kábelek csatlakozói

Üvegszálas kábel

A jelenlegi legkorszerűbb vezetékes adatátviteli módszer, az üvegszál technológia alkalmazása. Az információ fényimpulzusok formájában terjed egy fényvezető közegben, praktikusan egy üvegszálon. Az átvitel három elem segítségével valósul meg:

fényforrás - átviteli közeg - fényérzékelő.

 

A fényforrás egy LED dióda, vagy lézerdióda. Ezek a fényimpulzusokat a rajtuk átfolyó áram hatására generálják.

A fényérzékelő egy fotótranzisztor vagy fotodióda, amelyek vezetési képessége a rájuk eső fény hatására megváltozik. Az átviteli közeg egyik oldalára fényforrást kapcsolva a közeg másik oldalán elhelyezett fényérzékelő a fényforrás jeleinek megfelelően változtatja az vezetőképességét. Az elektronikában használt optikai kapu működése jól illusztrálja a működési elvet: A fotodiódára az RD ellenálláson keresztül kapcsolt pozitív feszültség a diódát nyitja, az átfolyó áram hatására fényt bocsát ki. Az átviteli közegen (ami esetünkben egy átlátszó műanyag) a fény átjutva az FT tranzisztort kinyitja és a felső pontjának feszültsége közel nulla lesz.

 

19. ábra: Optikai adatátvitel alapelve

Az, hogy ez a módszer nagyobb távolságokon is működjön átviteli közegként vékony üvegszálat kell alkalmazni és a fényveszteségeket minimálisra kell csökkenteni.

Fényveszteség három részből áll: a két közeg határán bekövetkező visszaverődés (reflexió), a közegben létrejövő csillapítás és a közegek határfelületén átlépő fénysugarak. Az első hatás a határfelületek gondos összeillesztésével minimálisra csökkenhető. Döntő jelentőségű az a tény, hogy a csillapítás nem az üveg alapvető tulajdonsága, hanem azt az üvegben lévő szennyeződések okozzák. A csillapítás megfelelő anyagválasztással minimalizálható.

A közeg határfelületén való átlépés megakadályozására a megoldás az optikában jól ismert teljes visszaverődés jelensége. Ha a közeg határfelületére érkező fénysugár beesési szöge elér egy kritikus értéket, akkor a fénysugár már nem lép ki a levegőbe, hanem visszaverődik az üvegbe. A 20. ábrán foglaltuk össze az elmondottakat. Az üvegszálban az adóból kibocsátott számos fénysugár fog ide-oda verődni, az ilyen optikai szálakat többmódusú üvegszálnak (multimode fiber) nevezik.

20. ábra: Teljes visszaverődés az üvegszálban

Ha azonban a szál átmérőjét a fény hullámhosszára csökkentjük, akkor a fénysugár már verődés nélkül terjed. Ez az egymódusú üvegszál (single (mono) mode fiber). ADÓ-ként ilyenkor lézerdiódát kell alkalmazni, de sokkal hatékonyabb, nagyobb távolságú összeköttetés alakítható ki segítségével.

Jelenleg a nagytávolságú összeköttetésben általában 0.2-2 db/km csillapítású fényvezető szálakat használnak, amelyek legfeljebb 20-100 km távolság közbenső regenerálás nélküli áthidalását teszik lehetővé.

Gondoskodni kell arról, hogy az optikai szálat csak minimális fizikai terhelés érje, minden nagyobb és hosszabb ideig tartó terhelést más szerkezeti elem vegyen át, mely védelmet és terhelésátvitelt a kábel konstrukciónak kell biztosítania.

A hagyományos rézvezetékeket tartalmazó kábel és a fénykábel konstrukciós követelményei között az alapvető különbség az, hogy míg a rézvezetéknél nagy, 15%-os nyújtás is megengedhető, addig a kvarcüveg esetében az 1%-os nyújtás is idő előtti öregedéshez, mikro-repedésekhez, esetleg törésekhez vezethet, ezért elsődleges követelmény a fénykábel szálainak tehermentesítése.

21. ábra: Optikai kábel felépítése

Az üvegszálak alkalmazásánál kritikus kérdés a jelek be és kicsatolása, amire kétféle illesztés, a passzív és az aktív használatos. 

A passzív illesztő két, az üvegszálra kapcsolódó csatlakozóból áll. Az egyik csatlakozón egy LED dióda, a másik csatlakozón egy fotódióda van. Az illesztő teljesen passzív, segítségével jeleket tudunk a fénykábelből kivenni illetve jeleket tudunk a kábelbe bejuttatni. Az illesztés természetesen fényveszteséggel (és így csillapítással) jár, ezért meg kell határozni, hogy adott távolságon hány darab használható

Aktív illesztő jelismétlőként vagy más néven jelregenerálóként is működik, azaz a beeső fényjelet villamos jellé alakítja, majd az ADÓ részén ezt LED dióda segítségével felerősítve továbbsugározza. Mivel a regenerálás folyamán a kábelen haladó fényjel villamos jelként is megjelenik, ezért ez közvetlenül elektromos jelillesztésre is felhasználható.

Ahogy az eddigiek szerint is nyilvánvaló, az üvegszálon adott hullámhosszú fényt használva csak egyirányú adatátvitel képzelhető el. Gyűrű kialakítású topológiánál az állomások illesztővel csatlakoznak a hálózatra, így egy vonalon is képesek venni (jel az illesztőbe bejön) és adni (illesztőn továbbadni). Kétirányú pont-pont átvitel esetén már két üvegszálas kapcsolat szükséges: egyik irány az adásra, másik a vételre. Ez szerencsére a legtöbb esetben nem igényli újabb kábel lefektetését, mivel egy kábel több független üvegszálat tartalmaz. Ha az üvegszálon több eltérő hullámhosszú fényt viszünk át, akkor hullámhossz multiplexelést valósítunk meg, és több csatorna alakítható ki egy üvegszálon. Természetesen ilyenkor a fény be- és kicsatolása fényszűrőkön, prizmákon keresztül valósítható meg.

Ethernet hálózatokban az üvegszálas kábelt 10BaseF néven definiálták.

 


Ábrajegyzék

Bevezetés

1.fejezet: A hálózatok célja, alkalmazása, alapfogalmak

2. fejezet: Általános elméleti alapok, Vonalak megosztása, Vezeték nélküli átviteli közeg, Analóg átvitel, Digitális átvitel, Párhuzamos és soros adatátvitel, Aszinkron soros adatátvitel, Terminálkezelés, X.21 interfész, ISDN-integrált szolgáltatású digitális hálózat, Beágyazott rendszerek kommunikációja, Soros kommunikáció, Ellenőrző kérdések és válaszok

3.fejezet: Közeg-hozzáférési módszerek

4.fejezet: Adatkapcsolati protokollok

5.fejezet: Hálózati réteg

6.fejezet: A felsőbb rétegek

7.fejezet: Lokális hálózatok

8.fejezet: A TCP/IP protokoll és az Internet

9. fejezet: Szótár

Irodalomjegyzék

Tárgymutató